2=8/7+x^2

Simple and best practice solution for 2=8/7+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2=8/7+x^2 equation:



2=8/7+x^2
We move all terms to the left:
2-(8/7+x^2)=0
Domain of the equation: 7+x^2)!=0
We move all terms containing x to the left, all other terms to the right
x^2)!=-7
x!=-7/1
x!=-7
x∈R
We get rid of parentheses
-x^2+2-8/7=0
We multiply all the terms by the denominator
-x^2*7-8+2*7=0
We add all the numbers together, and all the variables
-x^2*7+6=0
Wy multiply elements
-7x^2+6=0
a = -7; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-7)·6
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*-7}=\frac{0-2\sqrt{42}}{-14} =-\frac{2\sqrt{42}}{-14} =-\frac{\sqrt{42}}{-7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*-7}=\frac{0+2\sqrt{42}}{-14} =\frac{2\sqrt{42}}{-14} =\frac{\sqrt{42}}{-7} $

See similar equations:

| 9-x=-2x-12 | | 21=8n-(2n-3) | | r/4+19=25 | | x+0.243x=10477 | | 5m=7m-9/7 | | ((4x+1)/3)=((x+5)/6)+((x-3)/6) | | -3+6+6r-3r=1+4r | | -14x-100+20+7x=11x+15 | | 6=3s+-3 | | 35+0.30x=30+0.25x | | w/2+20=28 | | x3+4=−10 | | 8x+10=-6x-5 | | 1=8/7+x^2 | | 20a-17a=15 | | u/2+19=26 | | 7y-3y=48 | | h/2+1=2 | | 9x-15+x=36x+60+3 | | 5(3x-2)-2=-2(1-7x) | | 35/0.075x=30 | | 3x+17+16=x | | 20+6j=92 | | |−3d|=15| | | h/7+79=88 | | 0=4x-(5-x)-7(x+1) | | 3(3x-5)+x=12(3x+5)+3 | | k/8+82=88 | | 2x​ +1=23​ | | 13=r/3+11 | | 35/0.30x=30/0.25x | | 4y+2​=2y+6​=10y−12. |

Equations solver categories